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Abstract-The classical theory of isotropic, rate-independent, strain-hardcnina elastoplasticity
based on the "invariance of elastic properties" is reformulated as an incremental state variable
theory. In this Eulerian (spatial), formulation, state is described in terms of a scalar work­
hardening parameter and a single, fmite strain elastic deformation tensor that fixes the elastic
stretch ellipsoid in the current confijJUl1ltion. This theoretically "efficient" formulation proves
amenable to the consideration of material stability as the postulate of Il'iushin is shown to
rigorously extend the classical plastic potential theory into the 1arIer strain/deformation regime
in virtually identical form. Special care is taken to establish the precise connection between
these theoretical forms and those ofLee, as well as the more general forms ofGrecn and Naghdi.
Small strain linearization then serves to justify a particularly convenient frame-invariant gen­
eralization of the classical Prandtl-Reuss equations.

I. INTRODUCTION

In recent years, considerable effort has been expended in attempting to generalize the
classical elastoplastic constitutive laws to account for large deformation and geometry
change. In this paper, attention is focused on the simplest material model, due to Hill[l],
in which plastic flow is characterized as isochoric rearrangement of material along slip
planes. For this model, step removal of supporting stress is assumed to result in the
instantaneous recovery of an isotropic "unstressed" element having elastic properties
that are identical to those of a preselected reference element. It is also assumed that
material response is rate independent with continuous deformation giving rise to con­
tinuous variation in energy and stress, and that continued plastic working results in
increased resistance to further plastic flow owing to an isotropic increase in dislocation
barriers.

The generation of a large deformation constitutive theory based on this specific
set of material hypotheses was first attempted by Lee[2] and later by others including
the present author[3]. The first difficulty, which was addressed in [3], is to generate a
fully frame-invariant theory in which the significance of the particular choice of ref­
erence configuration is mathematically removed. This is required since the material
hypotheses stipulate that an element's "state" in its current configuration be fixed by
the elastic strain measured relative to an unstressed (stressfree) configuration and the
accumulated plastic work. These previous considerations led to the conclusion that
there must necessarily exist "a non-trivial coupling of the total and plastic strain tensors
in the argument of a properly invariant energy function". In particular, it was dem­
onstrated that within the context of the general theory of Green and Naghdi[4], the
specification of an energy function having the convenient special form

t\J = ~(E*), E* &I E - Ept (1)

does not ensure that "elastic properties are not coupled with plastic deformation", as
claimed by Dafalias[5].* In fact, the type of dependence that is required to guarantee

t Dafalias[5) uses the notation E, for the strain difference E*, This should not be confused with the
"elastic strain", E, .. i(FrF, - I), identified by Naghdi and Trapp[6, eqn (32)].

:I: Various forms of this model have been suggested on a number ofoccasions, e.g. (I) Naghdi and Trapp[7,
Sections 4 and 6), (2) Dafalias[5, Section 6], and (3) Casey and Naghdi[8, Section 4].
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594 P. A. DASHNER

the invariance of elastic properties, in the sense intended by Hill[l], does not seem to
be widely recognized as an important special case. This despite the fact that Naghdi
and Trapp[6] provide a vehicle for such considerations through the introduction of the
tensor A [see eqn (37)] in connection with a "special class" of materials. It is significant
that this invariance property is easily incorporated into a state-variable formulation of
the type considered in [9]. This is due to the fact that all general forms are expressed
in terms of Eulerian (spatial as opposed to referential) stress and deformation measures
with the body referred to its current configuration.

The second problem is to satisfactorily extend the plastic potential theory of
Drucker[lO]. Although this was partially resolved in [3], the Eulerian state-variable
format adopted here leads to a significantly more efficient mathematical formulation
that provides additional insight and allows for extension of the previous analysis. By
first recasting this theory in this Eulerian state-variable form and then requiring stability
in the sense of n'iushin[ll], it is now possible to rigorously prove (within the context
of the aforementioned Hill model) the existence ofan isotropic yield function depending
on the Kirchhoff stress deviator and the accumulated plastic work, t

of == dev(1'), (2)

which determines the "direction" of a well-defined, deviatoric "plastic strain rate"
through a plastic potential relationship of the form

(3)

In Section 2 the general theoretical forms that are appropriate for the Hill model
are set. These forms are taken from [9] and are based on the assumption that the "state"
of a material element, in its present configuration, is determined by a single, symmetric,
positive definite tensor e and a scalar hardening parameter Wp • The deformation tensor
e is taken to define the elastic stretch ellipsoid in the current configuration through the
expression

A'C'A == 1, (4)

wherein any solution A == A~ determines the elastic stretch A of the material fiber
currently oriented in the ~ direction. This assumption not only represents the correct
mathematical formulation of the material hypotheses, but also "builds in" significant
theoretical economy through the elimination of one tensor deformation measure.

This section concludes with the specification of yield criteria in terms of a state­
dependent yield function, the establishment of a number of crucial properties relating
to the elastic "accessibility" of states, and the determination of the thermodynamic
restrictions necessary to guarantee the dissipation inequality.

In Section 3, the connection between this "nonstandard" Eulerian formulation
and other more traditional formulations is established. First, the relationships between
the present Eulerian deformation measures and the Lagrangian finite strain measures
associated with the Green-Naghdi format are determined. This makes it possible to
recast this theory in its equivalent Lagrangian form and thereby demonstrate the relative
economy of the present approach. An additional byproduct of this exercise is the con­
clusion that "invariance of elastic properties" implies an isotropic energy function of
the form

\jI == ~(G), (5)

t Recall that the Kirchhoff and Cauchy stress tensors are related through the expression T = (PoIp)a
in terms of the reference and current mass densities Po and 'p.
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in terms of the total and plastic Green deformation tensors C and Cp • Similarly. the
relationships between the present deformation measures and the constituents of the F
= F..Fp gradient decomposition make it possible to establish that the present theory
and that proposed by Lee[2) are. in fact, equivalent.

The relationships established in Section 3 also make it possible to exploit the
general ll'iushin stability results as presented by Hill and Rice[l2) and more recently
by Dafalias[5). This is accomplished in Section 4 as the established constitutive in­
equalities are recast in terms of the present Eulerian measures. This leads directly to
a "Drucker" inequality,

(6)

and the attendant conclusions pertaining to convexity of yield surface and normality
of plastic strain rate as embodied in eqn (3).

In the concluding section, an elastic log-strain measure is used to demonstrate that
a hypoelastic rate equation of the form

(7)

approximates the exact theory to terms that are second order in elastic strain. It is
noteworthy that this particular form. with slight modification of yield criteria. has been
cited as being a convenient frame-invariant generalization ofthe classical Prandtl-Reuss
equation inasmuch as it gives rise to a symmetric stiffness matrix in a finite element
formulation.

2. GENERAL THEORY

As noted. the present material model is based on the assumption that an element's
state in its current configuration is fixed by its instantaneous elastic distortion and the
accumulated plastic work. In view of the description of elastic deformation and the
general constitutive forms appearing in [9). it is possible to immediately write the forms

'" = ~(e)
a = b(e)

c = c(d - D) + (D - d)e.

(Sa)

(8b)

(8c)

(8d)

in terms of isotropic "response" and "evolution" functions ~. 6' and ci, v. In these
expressions. '" represents the elastic strain energy per unit mass, while a represents
Cauchy stress; D = teL + LT

). the symmetric part of the velocity gradient tensor L;
(~). the corotational or Jaumann derivative; and Wp , the accumulated plastic work per
unit mass defined through the mechanical dissipation inequality

pWp = a·D - ptj, #:!: O. (9)

The symmetric, positive definite deformation tensor e and the symmetric plastic de­
formation rate or "slippage" tensor

2rc = cd + de (10)

describe the local geometry and the rate of change of geometry. respectively, of the
local unstressed configuration relative to the current. This is accomplished through the
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expressions
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(lIa)

(lIb)

which hold for any pair of flow-embedded (x = L'X) material directors (fibers) XI and
X2 and their respective counterparts YI and Y2 in the unstressed configuration. In writing
these forms, D and Wp have been excluded as arguments of the response functions
owing to the assumption that continuous deformation elicits continuous response and
the assumed invariance of elastic properties with continued plastic flow. As shown in
[9], the isochoric nature of the plastic deformation mechanism is modelled by imposing
the additional constraints

and

.£. = [det(eW/2
Po

b·re = tr(d) = 0,

(l2a)

(l2b)

in terms of the reference mass density and the inverse deformation tensor. To guarantee
rate-independent material behavior, it is also necessary to require that the state evo­
lution functions be homogeneous, degree one in the rate of deformation tensor, i.e.

d(e, Wp , KD) = Kd(e, Wp , D)

v(e, Wp , KD) = Kl1(e, wp , D).
(13)

Before proceeding to introduce yield criteria, it shall prove convenient to rewrite
these general forms in terms of new scalar and tensor variables and rate functions, viz.

'P = 4l(e) ;& po~(e)

T = i'(e) - (~) a(e)

so that

-y - Powp

~ = ~(e, -y, D) lIE b l /2 [ed(e, -y/Po, D) + d(e, -y/Po, D)e]bl
/2

11 = i)(e, -y, D) iii Pol1(e, -y/Po, D),

2re = cd + de = el/22~eIl2

:y = 11(e, -y, D).t

(4)

(5)

From eqn Ota) and the polar decomposition theorem, it is clear that stress relaxation,
in the absence of material rotation, carries material directors x in the stressed con-

t Note that d = 2il whenever c and d commute. This property will be shown to result from subsequent
stability considerations.
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figuration into their unstressed counterparts
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(16)

This correspondence makes it possible to rewrite the plastic deformation rate equation
(lIb) in the form

(17)

Comparison of this with the rate of deformation equation,

unambiguously identifies ~ as the rate of deformation tensor for the particular un­
stressed configuration obtained through rotationfree stress relaxation as determined by
eqn (16). In view of the definitions (14), it is also clear that the incompressibility con­
straint (l2b) takes the form

tr(211) = 0, (18)

and that the mechanical dissipation (plastic working per unit unstressed volume) in­
equality (9) is given by

(19)

in terms of the Kirchhoff stress T.

2.1. Yield criteria
To incorporate the familiar concept of yield, it is assumed that there exists a

smooth, scalar function (necessarily an isotropic function)

g = g(c, 'Y),

which defines, for each 'Y, a closed connected elastic region,

C('Y) = {c: g(c, 'Y) ::s O},

in c-space with boundary

iJC('Y) = {c: g(c, 'Y) = O}

defining states of elastic-plastic transition. Any deformation process

(20)

(21)

(22)

F = F(t),

such that

F(td = I

initiating at an elastic state (Cl, 'Yd,
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is now assumed to be purely elastic, Le.

c(t) = ce(t) • [F-I(t)VcI[F-1(t)]

-y(t) = "II,

if and only if

(23)

for each t: tl s t s t2. (24)

It therefore follows that a smooth deformation proceeds elastically through (c, "I), Le.

[~, T1](c,v,D) = 0,

if and only if

g(c, "I) < 0

or

and

g(c, "I) = 0

( d
g

) = (:~)'[~]91-0 = -2 [:~ C]'D SO.
dt elastic lAO lAO

(25)

Conversely, it must also follow that a smooth deformation proceeds "inelastically"
through (c, "I), i.e.

if and only if

g(c, "I) > 0

or

g(C, "I) = 0 and (~ C) .D < O.

(26)

To guarantee tha:t it will be possible to proceed elastically from any attainable state
and to sustain a program of plastic loading through any transition state c E iJC(-y), it
is necessary and sufficient to exclude the first of these possibilities by requiring that
(iJgliJc) c be nonvanishing at transition states,

iJg
g(c, "I) = 0 - iJc C ¥- 0,

and that

(27)

during plastic loading, i.e. whenever

g(c, "I) = 0 and e: C) .D < O.
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It shall prove useful to establish two topological properties relating to the acces­
sibility of states in the elastic region C('Y). The first property, namely, that

e E C(-y)

if and only if

c = QcQT E C('Y)

(28)

for any proper orthogonal Q, follows immediately from the isotropy ofthe yield function
g. The second property guarantees that any pair of e-values el, ez E C('Y) which are
accessible through a particular elastic deformation will, in fact, be accessible through
a multiplicity of such paths. Specifically, for any pair of e-values CI, ez E C( 'Y) in a
connected elastic region C('Y) and any proper orthogonal Q, there exists an elastic
deformation

F = F(t),

with

F(tl) = I

F(tz) = b!IZQc!I2,

leading from state (el, 'Y) to (cz, 'Y). This result follows from the connectedness of C('Y) ,
which establishes the existence of an elastic e-trajectory

e = e(t),

with

and the fact that the imposed deformation

(29)

via (23) and (24), tracks this same elastic trajectory, provided only that Q = Q(t),
(tl s; t S tz) is proper orthogonal and satisfies the initial condition Q(td = I.

2.2. Thermodynamic restrictions
The evolution equations (Sc,d) with (15) can now be used to expand the time rates

of the energy and yield functions:

<P = a'll . c
ac

= a'll . [cllZ2~eI/Z - cD - Dc]
ae

= 2 [e
l/Z ~: e

llZ
] . ~ - [: c + e :] . D

= -2 (~: c) .(D - ~),

(30)
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g = - 2 (Og c) .(D - 9)) + og 1].
oC o~

The energy expansion can then be used to rewrite the dissipation inequality (19) in the
form

This leads to the conclusion that

(3Ia)

and
(3Ib)

by virtue of the continuous dependence of l' on c and the fact that each attainable state
(c, ~) is a limit point of the open interior of the elastic region C(~).

Mer collecting results, and introducing the "yield gradient"

l' .. -2 (Og c)
g oc'

the general theory embodied in (8) is now seen to take the form

(32)

'P = <il(c) , P = Po(det(c)p/2 (33a)

l' = -2 (= c)
c = -(cD + Dc) + 2fc ,

-y = 1'.9) == 0,

with

_ {g(C' ~) < 0 or
9) - 0, whenever ( ) = 0 d ·D < 0g c, ~ an 1'g _ ,

and

9) ¥: 0 and g = 1'g·(D - 9) + :~ (1'.9) = 0,

whenever g(c, ~) = 0 and 1'g'D > O.

tr(9) = 0

(33b)

(33c)

(33d)

(34)

Thus, a particular model is fixed with the specification of three isotropic functions: a
scalar energy function <il(c), a scalar yield function g(c, ~) and a symmetric, deviatoric
tensor "plastic deformation rate" function ~(c, ~, D). The choice of these functions
must be consistent with all of the above equations and inequalities, with c = I defining
the class of stressfree states that produce a global minimum for internal energy.

It is now possible to demonstrate how the requirement of Il'iushin stability[ll)
severely restricts the form of the yield function and, in fact, fixes the plastic deformation
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rate 2b in terms of 4l and g. The development is exactly analogous to the small strain
development of Drucker[lO), and gives rise to generalized plastic potential theory for
large deformation elastoplasticity. These results are formally identical to those obtained
by Drucker, except that Cauchy stress a and the plastic strain rate Ep are replaced,
respectively, by Kirchhoff stress T and 2iJ, and that I1'iushin stability does not preclude
the possibility of a strain-softening material.

3. EQUIVALENT FORMS

Since these Eulerian or "rheological" constitutive relations are nonstandard in the
field of solid mechanics, it may prove instructive to recast them in various equivalent
(and more familiar) forms. This will facilitate comparison with existing theories and
make it possible to exploit the general stability results of Hill and Rice[l2) pertaining
to I1'iushin stability.

The standard kinematic formulation of elastoplasticity is based on the notion of
reference, plastically deformed and current material element configurations. The ori­
entation and geometry of each of these configurations are described by the plastic,
elastic and total deformation gradients Fp, F.. and F = F..Fp and the associated defor­
mation.and rotation measures

Y = Fp'X,Cp = F;Fp,Bp = C;I, Vp = C~I2,Fp = RpVp

x = F.. ·Y, C.. = F!F.. , B.. = C;I, V.. = C~I2, F.. = R..V.. (35)

x=F·X, C=FTF, B=C- 1 , V=C I12 , F=RV,

in terms of the reference, plastically deformed and current material director represen­
tations X, Y, x. To establish the relationship between these configurations and the
unstretched configuration defined through eqn (16), it is necessary to require that the
unstretched and plasticity deformed directors y and Y be related through an orthogonal
transformation, i.e.

y = Q'Y, (36)

Having thus imposed an identical geometry on the plastically deformed and unstretched
configurations, it is then possible to determine an alternative gradient decomposition

in terms of

(37)

y = Fp'X,

x = F.. ·y,

Now, since

- --1Bp = Cp ,

- --1B.. = C.. ,

Fp = RpUp

F.. = R..U...
(38)

- TF.. = F..Q

= (R..V..R!)(R..QT),

with F.. = b1l2 = Fr, by virtue of eqn (16), it follows from the uniqueness of the polar
decomposition that
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Fp = F;IF

= R"F;I(F"Fp)

= (R"Rp)Up.

F" = F"R; = b l /2

C" = R.,C"R; = b

i" = R"B"R; = c

U" = R"U"R; = bl/2

Ii" = I

Fp = R"Fp

Cp = Cp

i p = Bp

Up = Up

Rp = R"Rp •

(39)

Another useful correspondence follows from the relationship

y = R,,'Y

C
1l2

·X = R"Fp'X

C
I/2F·X = R"Fp'X,

which implies that

Fp = R"Fp = cl/2F

Cp = Cp = FTcF,.

and

c = (F- I)TCp(F-1)

= RU-ICpU-IRT

c = RGRT, b = RG-IRT,

in terms of the new Lagrangian deformation measure

Moreover, since

(40)

(41)

it also follows that

F" = F"R; = b l/2 = RG- 1/2RT

Fp = R"Fp = c1l2F = RG I/2U.

(42a)

(42b)
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A number of deformation rates also appear in the literature, In terms of the Green
strain tensors

2E=C-I

2Ep = Cp - I,
(43)

it is easy to verify that material deformation in the current and plastically deformed
configurations is described by

(44)

In terms of the "velocity gradients"

and the corresponding symmetric ( >s and antisymmetric ( )A parts

(45)

D = L s ,

W = LA,

Dp = (Lp)s,

Wp = (Lp)A'

tip = (Lph
Wp = (Lp)A'

(46)

it follows that these same material deformations are also described by

x = L,x - 2. (Xt 'X2) = xI,2D'X2
dt

. d
Y= Lp'Y - dt (yl ,y2) = Y I ,2Dp'Y2

- d -
Y= Lp'Y - dt (YI'Y2) = YI,2Dp'Y2,

(47)

Comparison of these rate expressions with (44) and (17), in light of the established
director relationships, leads to the conclusion that

(48a)

(48b)

and

D = (F-I)TE(F- I) = R(U-IEU-I)RT (48c)

T - - IT' - - I - - I . - I -T2ll = R..DpR.. = (Fp ) Ep(Fp ) = Rp(Up EpUp )Rp, (48d)

Observe that the plastic deformation rate tip, which plays a prominent role in the Lee
formulation (see [2]), has been replaced through the identification

(49)

SAS 22.6-C
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Also be apprised that the deformation and deformation rate expressions [(39), (42),
(48»), in terms of G = U-1CpU- 1 = RTeR, and the defining expressions [(35), (38),
(43), (45)] shall henceforth be used without citing reference.

3.1. The Green-Naghdi connection
In light of the Eulerian constitutive forms [(33), (34)] and the established defor­

mation and deformation rate relationships, it follows that

<p = <p(E, Ep ) ;:; 4>(G) = 4>(e) (50a)

g = geE, Ep , -y) ;:; g(G, -y) = gee, -y) (50b)

Tali -2 G~ G) = R T [ -2 (~: e) ] R = RTTR (50c)

T g ali -2 (:~ G) = R T [ -2 G~ e) ] R = RTTgR (50d)

Tg·D = Tg'RU-1EU-1RT

= (RTTgRHU-1EU- 1) = Tg'(U-1EU- 1), (50e)

and

Ep = FJ~(c, -y, D)Fp

= UGI/2RT~(e, -y, D)RG1/2U

= UGI/2~(RTeR, -y, RTDR)G1/2U

Ep = UGI/2~(G, -y, U- 1EU- 1)G I12U

(51)

by virtue of the isotropy of the scalar and tensor functions 4>, g and ~. Notice that the
new Lagrangian stress variables T and Tg introduced above commute with G, Le.

TG = GT = GI/2TG I12

TgG = GTg = Gl/2TgGII2,
(52)

just as T and Til commute with e. Also, with the introduction of the symmetric Piola­
Kirchhoff stress tensor

(53)

the dissipation inequality (9) takes the form

.y = S·E - <p ~ 0

(
a<p). alp .= S-- ·E--·E ~OaE aEp p ,

which in turn gives rise to the familiar results

S = alp
aE

.y = Sp·Ep ~ 0,
(54)
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in terms of the "thermodynamic tension"

(0)

(55)

Comparison of this dissipation rate expression with (3 Ib) leads to the conclusion that

Sp'Ep == 'T'~

== 'T.[(F; I )TEp(F; I)]

== [(F;I)'T(F;I)T]'Ep

- Sp == (F;I)or(F;I)T.

(56)

The stress expressions (53) and (56) together with (SOc) then lead to the response equa­
tions

== (U-1RT)(RTRT)(RU- 1)

== U-1TU- 1

Sp == - :: == (F;I)'T(F;I)T
p

== (U-IG-1/2RT)(RTR7)(RG-1/2U-I)

== U-1TG-1U- I .

Observe that these relationships make it possible to confirm the identity

(57a)

(57b)

(58)

which was established in [3] asa necessary condition for the invariance of free energy
under transformation of reference. By collecting these results and by making the ap­
propriate replacements in the constitutive equations (33) and (34), the equivalent La­
grangian forms are realized, viz.

'Ii == ~(E, Ep ) == <p(G) ,

S == a'li == U-1TU- 1
aE

(59a)

S == - ~ == U-1TG-1U- 1
p aEp.

Ep == ~(E, Ep , 'Y. E) == UGJl22il(G, 'Y, u- IEU- I)GI/2U (59c)

'Y == S"'E" ~ 0, (59d)

where

{
g < 0 or

~ == O. whenever g == 0 and Tg·(U-1EU- 1) :s 0

(60)
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in terms of
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, _ {g = 0 and
~ "" 0 and g - 0, whenever Tg'(U-1EU- 1) > 0,

g = g(E, Ep , -y) 55 g(G, -y)

In view of the fact that the scalar invariants of the tensor

(61)

are simply related to those of G, this material model clearly belongs to the special class
considered by Naghdi and Trapp[6] (see eqns (37), (57)],

3.2. The Lee connection
The theory presented in [2]t is based on forms that are equivalent to

'P = lP(Ce )

g = f(T, -y) = f(T, -y),

alP T
T = 2Fe -

C
Fea e

T = dev(T) (62)

for isotropic scalar energy and yield functions. Since

and

alP T
T = 2Fe -

C
Fea e

= 2(b l
/
2Re ) ( R; :: R..) (R;bI/2

)

= 2b 1
/
2 G:) bl/2

= 2b G:)

t The fact that the theory proposed by Lee is a special case of the general theory of Green and Naghdi
is established in [13].
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it is evident that these response forms are equivalent to those of the present theory.
The yield function and plastic deformation rate expression, however, are more specific
than those appearing in (33) and (34). Lee's argument for these forms was based on
certain physical considerations and the principle of maximum rate of plastic work. In
the next section it is established that these forms are, in fact, necessary to guarantee
material stability in the sense of lI'iushin[ll].

4. IL'IUSHIN STABILITY

For a material to be lI'iushin stable, it is necessary and sufficient to guarantee
that mechanical energy cannot be extracted from a material element during a closed
deformation cycle. Put differently, ll'iushin stability requires that the energy dissipated
must equal or exceed the internal energy released during any and all closed deformation
cycles. In the context of the present development, this takes the form of the closed
deformation path inequality

I
t!

!:J.-y + !:J.!p = 1'·0 dt === 0,
to

(63)

(65)

The strictly dissipative nature of the plastic deformation mechanism is enforced by
stipulating that the equality should hold only for purely elastic deformation cycles.

The restrictions imposed by this additional requirement can now be determined
by making use ofthe generalll'iushin stability results as presented by Hill and Rice[12].
In the context of the present development, these restrictions (which are reviewed in
Appendix A) take the form

[8f!p]~~:Z~:Z:~ = o~ [!p(E, , Ep ) - !p(Eo, Ep )] ·Ep S 0
p

- [Sp(EJ , Ep) - Sp(Eo, Ep)]'Ep === 0 (64)

for all Eo E {E: geE, Ep, -y) sO}, and all plastic strain rates Ep occurring at the transition
state E) E {E: geE, Ep, -y) = O}, and

(8fS)'E = E·[aS/aEp]·Ep

. [' a
2

!p ].= E· aE ® aEp ·Ep

= - Ep·[aSplaE]·E s 0

- (8~Sp)'Ep = [.5!. Sp] 'Ep === 0
dt E,. - consl.

during plastic loading.
By making use of the plastic stress and deformation rate expressions (57b) and

(48b), eqn (64) can be rewritten as

[Sp(E), Ep) - Sp(Eo, Ep)]'Ep === 0
--I --I T --I --I T - T-[(Fp1 )1'1 (Fp1 ) - (Fpo )To(Fpo ) ]-[(Fp1) 2bFp1 ] === 0

[1'1 - (FpJ;;~I)To(FpIF~I)T]'2b === O.

In view of (42b), the plastic deformation gradients in this expression are given by

Fpo = cA/2 Fo
- _ 1/2
FP1 - Ct Ft.

(66)
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in terms of the deformation F accumulated during the elastic loading segment. As a
consequence of (29), however, F has the representation

in terms of some proper orthogonal Q. It therefore follows that

Fp1 = cl/2 (FFo)

= c}/2(bF2Qcb"2)Fo

= QFpo

and consequently

(67)

The inequality (65) can be similarly reduced by making use of the fact that

(68)

{Rp [:1 (R%TRp ) J~_o R%}.~ <:= 0

[.;. + TWp - WpT]~_o'~ <:= 0

in terms of the "unstretched" vorticity tensor

Wp = (Lp)A = RpR%

introduced in (46).
Expressed in terms of the stress and plastic deformation rate functions ;. and 9l

in (14), the inequality (67) is seen to require that

(69)

for any Co E C("!) and CI E ac("!), which are connected by the purely elastic deformation
F = bII2Q~/2, and any deformation rate D at 1 = 11. The strictly dissipative nature of
plastic flow shall be enforced by stipulating that the equality should hold only for
unloading or neutral loading, i.e. T",'D :$ O.

Now, by again appealing to the discussion leading to (29) concerning the acces­
sibility of elastic states in C("!), it is evident that there exist Il'iushin circuits that
establish this same inequality for all CI E aC("!), all Co E C("!) and arbitrary proper
orthogonal Q-and in particular for Q = I. Thus, it is necessary to require that

(70)
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for all CI E aC('Y), all Co E C('Y) and all deformation rates D at ( = (I' Observe that
(70) guarantees (69) by virtue of (28) and the fact that f is an isotropic function of c.
Note also that this inequality is identical in form to that obtained by Drucker[10].

To assess the implications of (70), the Kirchhoff stress function or = f(c) is used
to define the image of the elastic region in stress space, viz.

Y('Y) == f[C('Y)]'

The first implication of inequality (70) is that

or E int Y('Y) == f[int C('Y)]

if and only if

or + pI E int Y('Y)

for arbitrary real p. This follows since

[(or + pI) - or]'91 = p tr(91) = 0

(71)

for all possible plastic deformation rates due to the incompressibility constraint (18).
It must be concluded, therefore, that it is impossible to reach an elastic-plastic transition
state through purely hydrostatic loading. By continuity it must also follow that

or E Y(-y)

if and only if

or + pI E Y('Y)

for all real p, and further that

or E aY('Y) - f[aC('Y)]

if and only if

or + pI E aY('Y)

for all real p. These conclusions may be conveniently rephrased in the form

or E int Y('Y)

or E aY('Y)

in terms of the Kirchhoff stress deviator

iff
iff

T E int Y('Y)

T E aY('Y),
(72)

T = dev(or) IE or - 1 tr(or)l. (73)

Thus, Il'iushin stability, through (70), guarantees a yield formulation in terms of the
Kirchhoff stress deviator. That is, there must exist an isotropic scalar function h which
implicitly defines the yield function (20) through the expressions

f(or, 'Y) = h(T, 'Y)
g(c, 'Y) = f[i'(c), 'Y].

(74)
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With reference to (34), the yield criteria can now be recast in the alternative form

{
f('1' -y) < 0 or

~ = 0, whenever f( ) - 0 d ·D 0'1, -y - an '1g :S ,

and

in terms of

whenever {f('1' -y) = 0 and
'1g·D > 0

(
Og ) [. of]'1g = -2 oC c = -2 (in/oC)T. en c.

(75)

Moreover, after rewriting the Il'iushin and dissipation inequalities (70) and (3Ib) in
their deviatoric form

[+(t\) - +(to)]·~(tl) > 0

1'(tl)·~(td > 0

whenever

1'(to) E Y(-y)

1'(td E aY(-y)

and

it is evident that it is necessary and sufficient to require that the projection of Y(-y) in
deviatoric stress space,

Y(-y) .. {'1: '1 E Y(-y) and tr('1) = O}, (76)

form a convex neighborhood of the origin l' = 0, and that the plastic deformation rate
at +E aY(-y) be directed along the outward normal. Mer noting that

af
df = - . d'1 = dh

en

= ah .df
aT

= (ah)' .d1' = (oh)' 'd'1
aT aT'

it follows that the normal to aY(-y) in deviatoric, symmetric tensor space is given by

af
=-

en
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Thus, the "normality" condition takes the familiar form
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(77)

in terms of a nonnegative scalar multiplier a. An immediate consequence of this is that
2b shares principal directions, and thus commutes, with c so that

This makes it possible to rewrite (33c) in the simpler form

(78)

c = - (cD* + D*c), D* == D - 2b (79)

in terms of an "effective" deformation rate D*. Moreover, since

. af
f = g = ,. '(D - 2b) + - ("'2b)

g a-y

= ,. ·D - (,. - af ,.). 2b = 0
g g iJ'Y

during plastic loading, it is clear that the scalar coefficient in (77) is given by

" _( TO;») j',. -~,. .~
g iJ'Y iJT

This in turn gives rise to the additional requirement that

(80)

(81)

(82)

(
,. _ af ,.) . af > 0

g a-y a,.

at all transition states by virtue of the fact that both a and ,.g'D are positive during
plastic loading.

Before collecting these results, observe that the second Il'iushin inequality, the
plastic loading inequality (68), is now reduced to

- - (af )[of + ,.Wp - Wp,.l~-o· a iJT > 0

[}']elastic + [(',. af _ af ,.) . W p ] > 0
iJT a,. ~-o

[flelastic = [g lelastic > 0

"g·D> 0

by virtue of the isotropic dependence of f on ,.. Since this is precisely the plastic loading
condition, no additional restrictions are obtained. Thus, the imposition of the ll'iushin
inequalities (64) and (65) further restricts this theory to the form

<P = 4>(c) , p = po[det(c)p/2

,. = T(C) = -2 (~:c)

c = c(2b - D) + (2b - D)c

.y = ,..2b
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where

and

in terms of
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_ {f(T, -y) < 0 or
0. - 0, whenever f(T, -y) = 0 and Tg'D S 0,

T ·D {f(T "II) - 0 and
0. = g whenever' I -

(
T _ af T) . af ' Tg'D > 0

g a-y aT

f(T, -y) = h(f, -y)

g(c, -y) = f[T(c), -y]

T = - 2 (ag c) .
g ac

(83)

(84)

The specification of the scalar functions <p and h is subject to the requirement that c
= I represent a unique extremal point and global minimum for <p, that h(f, -y) < 0 (for
fixed -y) define a convex neighborhood of the origin f = 0 in stress deviator space and
that inequality (81) be satisfied at transition states.

Recall that these forms, subject to all stated restrictions, guarantee that certain
necessary conditions for I1'iushin stability are satisfied. Conceivably, additional re­
strictions attend more complicated deformation cycles. In this regard, it is also common
to require that there exist infinitesimal stress cycles consisting of incremental plastic
loading from a transition state followed by elastic stress recovery. It is clear that the
Il'iushin inequality is automatically satisfied for such a path since .:i<p = 0 and .:i-y >
O. However, for such paths to exist in the fIrst place, it is necessary to require that the
material "stress harden" during plastic flow in the sense that

af- < 0, whenever f(T, -y) = o.
a-y

(85)

In the final section, it is established that an elliptical energy function renders this
restriction more severe than (81), and thus the possibility of a strain-softening material
is not precluded by I1'iushin stability. Moreover, since

. af 0 af.
f = iJT . T + a-y -y,

it follows that

. af 0

f=-'TsO
aT

for neutral loading or unloading (.y = 0) from a yield point (f = 0), and that

j = af . ++ af .y = 0
aT a-y

af 0 af .
--'T= ---y

aT a-y

during plastic loading. In view of the fact that.y > 0 during plastic loading, it immediately
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follows that the additional "hardening" restriction of/ity < 0 is necessary and sufficient
to establish the correspondence

(
of 0)sgn(Tg'D) = sgn iJT' T (86)

whenever f = 0. This result could then be used to restate the yield criteria (83) in a
more familiar "stress-based" form that would prove useful for stress-controlled (as
opposed to deformation-controlled) processes.

Before proceeding, it is also worthwhile to confirm that the identities

and

f(T, -y) = f(T, -y)

of = RT of R
oT iJT

of of
T'-=T'-

g oT g iJT

~(G, -y, U-IEU-I) = ~(RTcR, -y, RTDR)

= RT9J(c, -y, D)R

=aRT(~) R

= a (:~) ,

(87)

(88)

follow as a consequence of (40, 48c, 50)., Thus, the plastic rate form (59c) can now be
rewritten as

where

and

a = 0,

{
f(T' -y) = 0 and

whenever Tg.U-IEU- I > 0,

otherwise.

(89)

It seems that it should also be possible to derive these or equivalent Lagrangian
rate forms by applying the general "work postulate" inequalities of Naghdi and
Trapp[7, 14] directly to the special forms given in (59) and (60). However, this process
would be impeded by the (algebraically) complicated nature of the yield function trans­
formation

(90)
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in terms of the "total stretch" function

In any event, comparison of the Lagrangian forms (59) and (60) and (89) with the
equivalent Eulerian forms (82) and (83) lends credence to the assertion that this par­
ticular theory is better suited to an Eulerian formulation. The relevance of this obser­
vation derives from the relative importance of this particular (highly specialized) ma­
terial model-based as it is on widely understood and historically important material
hypotheses.

A final alternative form for (59c) can be written in terms of the nonsymmetric
stress measure

~=SC

= (U- 1TU- 1)U2

= U-ITU.

Since the invariants of ~ are identical to the invariants of T, it is clear that

f~, -y) = f(T, -y) = f(T, -y),

and

Owing to the commutative property (52), it then follows that

. af
Ep = aUG aT U

= a(UGU) ( U- 1 :~ u)
af

= aCp a~

. (af)-+ BpEp = a a~ .

(91)

(92)

(93)

This confirms the plastic rate form suggested in [3J.
An illustration of the usefulness of this final form involves the Jrtype yield function

f(T, -y) = tt·of - K(-y),

for which

af = of = T - ! tr(T)I
aT 3

af af 1
-+ - = R T

- R = T - - tr(T)1aT aT 3

af af 1
-+ - = U- I - U = ~ - - tr(~)1

a~ aT 3'
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In view of the identity (58), it immediately follows from (93) that

in terms of the thermodynamic tension Sp.

615

S. LOG STRAIN AND SMALL STRAIN FORMULATION

In this section, the constitutive forms (82) and (83) are recast through the replace­
ment of the elastic deformation tensor c with the elastic log-strain tensor e defined
through the expression

2e E -In(c}

oc 1
= ~ - (I - e}n,

n-I n
III-ell<1 (94)

"" 1
- c = exp(-2e) ;:::: ~ - (-2e}n.

n-O n!

The specific properties of this tensor transformation are developed in Appendix B. For
present purposes, it is important to recall that

that

e =0 iff c ;:::: I, (95)

tr(e) = In([det(e}] -112)

and that chain rule expansion is accomplished through the expressions

(96)

O<p = (oc) . o<p
Oe cJe oc
o<p = (Oe) . O<P
oc oc cJe'

(97)

which are written in terms of the symmetric "double tensors"

= - 2cA, whenever Ac = cA (98)

(Oe) . A = _ ! {j; ! [± (I _ c}n-KA(I _ e)K-I]}
oc 2 n-! n K-!

= - tbA, whenever Ae = eA.

Use shall also be made of the "small strain" expansion

(:) . (cD + Be) ;:::: -{B + i[e2B - 2eBe + Be2 ] + ...}

= - B, whenever Be = cB.
(99)

Now, since the energy and yield functions are isotropic functions of their tensor
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argument e, it follows from (97) and (98) that

= - 2 (- ! b a'll) e
2 ae

a'll
= ae '

and

(00)

T = -2 (ag c)
g ae

In view of (74), it then follows that

ag
=-ae

ag
T =­

g ae

=at . (aT)
aT ae

at= K·­- aT

in terms of the symmetric, fourth-order "ellipticity" tensor

Finally, the evolution equation for e, viz.

e = (:) . c

= (:) . [e(2b - D) + (2b - D)e]

= - (:) . (cD + Dc) - 2b

= D - 2b, whenever cD = Dc,

(101)

(102)

(103)

follows as a consequence of (97) and (98) and the commutative property (78). For small
elastic strain, expansion (99) may be used to obtain

(104)

After collecting results and making use of the appropriate substitutions in (82) and
(83), the equivalent log-strain forms are obtained, viz.
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cp = eP(e) , In (~) = tr(e)

f(T, "I) = h(f, "I), f = T - ; tr(T)I

acp
T =-ae

1
-(:) ° (cD + Dc) - 2b

e = D - ~ + l[e2D - 2eDe + De2
] +

D - 2b, whenever cD = Dc

'" = To2b

i.°af/in {f(T, "I) = 0 and
a = aflin0i.0aflin _ afliJ-y(T.aflin) ° D, whenever D'15oaflaT> 0,

a = 0, otherwise.

617

(105)

(106)

As before, e = 0 must represent a unique extremal point and a global minimum for
eP, h(f, "I) < 0 (for fIxed "I) must defIne a convex neighborhood of the origin in stress
deviator space and

af aflin'i.'aflaT
a'Y <. (T.aflaT) , whenever f(T, "I) = 0 (107)

to ensure that a > 0 during plastic loading. As claimed in the previous section, it is
now clear that an elliptic energy function, characterized by positive definite 15, guar­
antees that this condition is satisfied whenever

af
-<0·
iJ-y

at transition states.
These forms are particularly useful in the event that the elastic strain is "small" °

In this case, the elastic strain evolution equation

e = D - 2b, (l08)

which is exact whenever D and e share principal directions, is accurate to terms of
order II D II II e 11 2

o It is important to note that the assumption of small elastic strain in
no way implies "small deformation", since no restriction is imposed on the amount of
plastic deformation that may accumulate. Thus, the log-strain equations (l05), with the
linearized rate form (108), may well provide the basis for the modeling of many large
deformation-forming processes.

Of further interest is the fact that the most general polynomial expansion for the
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isotropic energy function, satisfying all stated restrictions, has the form

ljl(e) = 'Po + !e'~'e + ...

= 'Po + ![A tr(e) + 2ILe'e] + ....

This provides rational justification for the fully linearized forms

T = A tr(e)I + 2ILe

e=D-~

:y = T'~

with

(109)

(110)

_ af/aT'D {f(T, 'Y) = 0 and
(l - af . af __1 af (T .af ) ,whenever aflaT'D > 0 (111)

aT aT 21L ~ aT

and

(l = 0, otherwise.

These forms, which accurately approximate the exact theory in the small elastic strain
regime, are easily recognized as a corotational form of the classical Prandtl-Reuss
equations. For completeness note, once again, that the yield function f must define a
convex neighborhood of the origin in f-space and that the inequality (81) is guaranteed
by imposing the "hardening" requirement af/~ < o. With reference to (85) and (86),
it is also clear that this latter "overstrict" .condition would make it possible to restate
the plastic loading requirements in the equivalent form

f(T, 'Y) = 0, af • 0-'T> .
aT

(112)

Elimination of e from the small strain forms (110) is easily achieved by differen­
tiating the stress response equation and making the appropriate strain rate substitutions.
This leads to the rate-independent, symmetric, hypoelastic form

where

f=

2 [~ - IL~ G~ @ ~) ] • D

a~ {D . [ 150 - IL~ (~ @ ~) ] . D} ,

(113)

and

[
af af 1 af ( af ) ] - I {f = 0 and13 = -. - - - - T' - whenever
aT aT 21L a'Y aT' aflaT·D > 0,

13 = 0, otherwise.

(114)
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This particular form, employing Cauchy rather than Kirchhoff stress in the yield for­
mulation, has already been used by McMeeking and Rice[l5] and others to model large
deformation elastoplastic phenomena. It is interesting to note that the popularity of
this model is evidently based on the fact that it leads to a symmetric stiffness matrix
in a finite element formulation-in spite of misgivings regarding its suitability as a
material model. Through this final exercise, it is now apparent that in comparison with
other Prandtl-Reuss generalizations, this form (in addition to being the most convenient)
most accurately approximates the exact material model.

These final considerations offer an alternative to those who hold that a small de­
formation incremental theory can be made "valid" for large deformation merely by
rephrasing it in terms of "properly invariant" time derivatives. Such an approach af­
fords no understanding of the extended circumstances under which the generalized
mathematical model continues to accurately represent the original material hypotheses.
The present development suggests that the formulation of large deformation theory
should be based on strict mathematical interpretation of the material hypotheses and
a precise accounting for geometry change from the outset. Such a theory, if not im­
mediately "usable" in its own right, will at least provide a rational context for the
selection of an approximate theory. The large strain state-variable format detailed in
[9] establishes a theoretical foundation that is particularly well suited to this sort of
approach.
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APPENDIX A

In terms of the symmetric Piola-Kirchhoff stress S and its conjugate the total Green strain E, the
dissipation (per unit reference volume) inequality is given by .

'Y = S·t - Ii> <!: 0,

while the Il'iushin inequality is expressed as

L'f
S·t dl = A'( + Alp <!: 0

'0

for any and all closed deformation paths

(All

(A2)

E = E(/),

SAS 22:6-D

to::S; t ::s; If, with E(to) = E(tf). (A3)
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Grouping all inelastic Lagrangian variables under the collective symbol H, the established constitutive forms

lp '" 4>(E, H)

S '" S(E, H),
(A41

and the notational shorthand

{

ZHO(El .. Z(E. Ho)

Z '" Z(E, H) 8~Z ... G~) .E

(
iJZ) .

8~Z'" iJH . H

(AS)

shall now be used to expand the ll'iushin inequality (A2). With reference to Fig. 1, this inequality shall be
enforced along a closed deformation path consisting of:

(i) an initial elastic segment leading from (Eo, 80) - (E I , 8 0), with

Eo E 'l,(Ho) ... {E: f(E, Ho) S O}

and (A6)

E I E iJ'l,(Ho) .. {E: f(E, H o) '" O},

in terms of a yield function f; followed by

(ii) a plastic loading segment from (E I , Ho) - (E I + AE, Ho + AH); and concluding with
(iii) a terminal segment of elastic unloading leading from (E + AE, Ho + AH) - (Eo. Ho + .lHl with

Eo E 'l,(Ho + AH).
Since 'Y '" 0 and 8 == const. on each of the elastic segments, (A2) takes the form:

i
tf

. i tf
III S·E dt == ro (.p + .y) dt ~ 0

i t! f,tt +Al. f,'f
<PHO dt + S'E dt + <PHO+AH dt ~ 0

to 11 11 +111
fA7)

But

(AS)

so that

J.:f S'Edt '" - {rlpHO+AH - 'PHollcl + fl+Al (SHO+AH - S)'Edt} ~ 0

- [lpHO+4H - lpHom + ([8{E, Ho + AH) - S(E, H)]·E},.,.At s 0, II S t* S (tl + At), (A9)

" \

\

~
I .Wl) • oSl

I
/

/
/'

/'

,/

-- - --..... --
Fig. I. Closed isothermal strain cycle.
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where the mean value theorem has been used to evaluate the integral term. Assuming smooth dependence
of <f and Son H and smooth variation of H during the inelastic segment, it follows that

and

with

SIE*.Ho + t:.Hl - S(E*,H*) =' [(llfS) + O(t:.r*»),=t·t:.r*,

t:.r* '" (I, + t:.t) - r* ..... 0 0;; t:.r* :s; t:.r.

IAIO)

(All)

Thus. to lowest-order terms, the inequality takes the final form

[(Il~'lp) + O(t:.t)H~', + {/(lWSI + O(t:.n)·EL,.t:.r* :s; (),

where I, :s; 1* :s; (I, + t:.n and t:.1* =' (I, + t:.n - 1* :s; t:.1. (AI2)

Since it is possible to choose an Il'iushin circuit for which Eo >F E, and t:.r <l! I, it is clearly necessary
to require that

(A 13)

for all Eo E "t,(Ho ) and all possible inelastic rates Ii that can be realized at E, E iJ'l;( Hu). Similarly, for Il'iushin
circuits having Eo = E, and t:.1 <l! I, it is seen to be necessary to require that

(llfS)·E; :s; 0 (AI4)

during plastic loading. These necessary conditions are equivalent to those derived by Hill and Rice[12), and
subsequently, by Dafalias[5).

APPENDIX B

Let e represent a standard "metric"-type deformation tensor with e =' I corresponding to zero defor­
mation and [det(e)pl2 relating to change of volume. An associated log-strain measure is now defined through
the expression

2e - -In(e) =' In(b),

This definition clearly implies the relationships

(BI)

e =' exp( -2e),

the expansions

b =' exp(2e), (B2)

for all e~ I ,e = ~ ,(- 2e)" = I - 2e + 2e- + ...•
"=0 n.

x I
2e = ~ - (I - e)" = (I - e) + HI - e)2 + !(I - e) +

"_I n

and the form

for all e: III - e II < I

(B3)

(B4)

in terms of the eigenvalues (CI, C2, C3) and corresponding eigenvectors (Cl, C2, (3) of e.
One important property of this strain measure is that it contains volume change information in its trace

invariant. To see this. consider the respective sets of eigenvalues (ct. C2, C3) and (et, e2, e3) and note that

det(e) = CI C2C3 = exp( - 2el )'exp( - 2e2)'exp( - 2e3)

= exp[ - 2(e1 + e2 + e3)]

= exp[-2tr(e»),

which implies the relationship

tr(e) =' In{[det(e)] -1/2}. (B5)

Additional considerations pertain to chain rule differentiation under a change of variable from e to e in



622 P. A. DASHNER

the neighborhood II I - c II < 1. In particular, after noting that

III - c II < 1,

a "double tensor" (linear map from tensors to tensors)

G = [~]

is defined such that

and

III - c II < 1, (B6)

(B7)

The case for which A shares principal directions (and thus commutes) with c is important since, under these
circumstances, (B6) can be shown to reduce to

G·A;l;, -lbA. (B8)

In view of the identities A·BCD = BTADT·C and A·B = B'A, the symmetry of this double tensor is easily
established:

A·G·B = A· (- ! {:i ! [j; (I - c)"-KB(I - C),,-I]})
2 "cln ,,-I

- ! {:i ! [j; A'(I - c)"-KB(I - C),,-I]}
2 ,,_In K-I

- ! {i ! [j; (I - c)"-KA(I - e)K-I.B]}
2 ,,_1 n ,,-I

= B· (- ! {i ! [j; (I - c)"-KA(I - C),,-I]})
2 ,,-I n ,,-I

= B·G·A.

As a consequence, it follows that if

u = f(e) = h(e),

then

du af de ah de
d'} =a;' d'll = iJe' dTl

=ah·G·de
iJe d'll

de ah
=-'G'-

d" iJe

= (G' :) .::'
and thus the "chain rule" result

The additional result

(au ) (au au) (au au)2 -c ... -e+e- =G' -e+e-
ac sym ac ac iJe iJe

is a simple consequence of (B 10) and the defining expression (B6).

(B9)

(BI0)

(Bll)
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As a fmal exercise, consider two "small strain" expansions. It should be noted that all higher-order
terms in the following expressions are of order II e 11 3 II A II.

G·A = -i{A + U(I- e)A + A(I - e)] + U(I- e)2A + (I - e)A(I - e) + A(I - e)2] + ... }

= -i{A + (e - e2)A + A(e - e2) + !<e2A + eAe + Ae2) + ...}

G'A = -i{A + (eA + Ae) + l<e2A + 4eAe + Ae2) + ...}

G'(Ae + cAl = -i{(Ae + cA) + [e(Ae + cAl + (Ae + eA)e]

+ Ue2(Ae + cAl + 4e(Ae + cA)e + (Ae + cA)e2] + ...}

= -i{A(1 - 2e + 2e2) + (I - 2e +2e2)A + e[A(1 - 2e) + (I - 2e)A]

+ [A(I - 2e) + (I - 2e)A]e + f[e2A + 4eAe + Ae] + ...}

= -i{2A + f<e2A - 2eAe + Ae2) + }

G·(Ae + cAl = -{A + l<e2A - 2eAe + Ae2) + }.

(BI2)

(BI3)


